Local chromatic number of quadrangulations of surfaces
نویسندگان
چکیده
The local chromatic number of a graph G, as introduced in [4], is the minimum integer k such that G admits a proper coloring (with an arbitrary number of colors) in which the neighborhood of each vertex uses less than k colors. In [17] a connection of the local chromatic number to topological properties of (a box complex of) the graph was established and in [18] it was shown that a topological condition implying the usual chromatic number being at least four has a stronger consequence for the local chromatic number being at least four. As a consequence one obtains a generalization of the following theorem of Youngs [19]: If a quadrangulation of the projective plane is not bipartite it has chromatic number four. The generalization states that in this case the local chromatic number is also four. Both papers [1] and [13] generalize Youngs’ result to arbitrary non-orientable surfaces replacing the condition of the graph being not bipartite by a more technical condition of an odd quadrangulation. This paper investigates when these general results are true for the local chromatic number instead of the chromatic number. Surprisingly, we find out that (unlike in the case of the chromatic number) this depends on the genus of the surface. For the non-orientable surfaces of genus at most four, the local chromatic number of any odd quadrangulation is at least four, but this is not true for non-orientable surfaces of genus 5 or higher. Supported in part by an NSERC Discovery Grant, by the Canada Research Chair program, and by Research Grant P1–0297 of ARRS, Slovenia. On leave from: IMFM & FMF, Department of Mathematics, University of Ljubljana, Ljubljana, Slovenia. Research partially supported by the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. K76088 and NK78439. Supported in part by an NSERC Discovery Grant, by the Canada Research Chair program, and by Hungarian Foundation for Scientific Research Grant (OTKA) no. 78439.
منابع مشابه
Realizing the Chromatic Numbers and Orders of Spinal Quadrangulations of Surfaces
A method is suggested for construction of quadrangulations of the closed orientable surface with given genus g and either (1) with given chromatic number or (2) with given order allowed by the genus g. In particular, N. Hartsfield and G. Ringel’s results [J. Comb. Theory, Ser. B 46 (1989), 84-95] are generalized by way of generating minimal quadrangulations of infinitely many other genera.
متن کاملLocal chromatic number and topological properties of graphs
The local chromatic number of a graph, introduced by Erdős et al. in [3], is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk, based on the papers [13, 14, 15], would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of...
متن کاملLocal chromatic number and topological properties of graphs ( Extended abstract )
The local chromatic number of a graph, introduced by Erdős et al. in (4), is the minimum number of colors that must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk, based on the papers (14; 15; 16), would like to survey some of our recent results on this parameter. We give a lower bound for the local chromatic number in terms of the lower bound of...
متن کاملChromatic polynomials and toroidal graphs
The chromatic polynomials of some families of quadrangulations of the torus can be found explicitly. The method, known as ‘bracelet theory’ is based on a decomposition in terms of representations of the symmetric group. The results are particularly appropriate for studying the limit curves of the chromatic roots of these families. In this paper these techniques are applied to a family of quadra...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Combinatorica
دوره 33 شماره
صفحات -
تاریخ انتشار 2013